

Motivation for Dust Studies

Gets in the way of everything

- Vital to our understanding of the universe
 - dust a primary respository of the ISM
 - interpretation of Cosmology results, etc.
 - chemical evolution of stars, planets, life

Multiwavelength studies of dust

- X-rays: unique probe of solid state nature of molecule; sensitive to ALL atoms in both gas and solid phase
- IR: can directly probe vibrational modes, but limited to PAHs, graphites and certain silicates (~2.5-25 μ m region). Cannot easily speciate the grain composition
- UV : dust inferred from the depletion factor (amount expected : measured)
- Optical : dust inferred from redding/extinction, polarization
- Radio: probe gas phase; 21cm, CO, etc.

Reviews, etc from some of the experts

Dust and Astrophysics :

- Bruce Draine: Annual Reviews of Astronomy & Astrophysics & references therein: e.g. Li & Greenberg 2003
- Endrik Krügel: `The Physics of Interstellar Dust'
- Lyman Spitzer: `Physical Processes in the ISM'
- D C B Whittet: 'Dust in the Galactic Environment'
- Also, ApJ papers by Woo et al. 1995, 97; Forrey et al. 1998

XAFS Theory & Practice

- Koningsberger & Prins (1988)
- & Kruegel (2003)
- B. Ravel & M. Newville
- Rehr & Albers (2000)
- J. Stöhr (1996)

Detections of X-ray Absorption Fine Structure

GRS 1915+105 : Lee et al. 2002

- interstellar grain composition
- solid state astrophysics ?!

also see Ueda et al. 2005

The theory behind measuring X-ray Absorption Fine Structure (XAFS) to determine molecular composition

The photoelectric effect: X-ray photon absorbed by an electron in a tightly bound quantum core level (e.g. 1s or 2p)

Bound-free case for isolated atoms

X-ray absorption through the photoelectric process

Isolated Atom: Bound free process --> edge step promotion of e- to continuum results in sharp rise in the probability for absorption

$$\mu(E) = \mu_0(E)$$

Figures from "XAFS": © 2002 Matt Newville

The theory behind measuring X-ray Absorption Fine Structure (XAFS) to determine molecular composition

- The photoelectric effect: X-ray photon absorbed by an electron in a tightly bound quantum core level (e.g. 1s or 2p)
- Isolated Atom: Bound free process --> edge step
- Isolated Atom: Bound bound process --> inner shell resonance absorption lines (e.g. MCG-6-30-15: Oxygen V, VI KLL: Lee et al. 2001; IRAS 13349: 2p-3d M-shell Fe: Sako et al. 2000, NGC 3783 -- Kaspi et al. 2002, Netzer et al. 2003 & references therein; atomic calcs: e.g. Pradhan; Kallman; Behar ...)
- Molecule: bound-bound process --> XAFS

Heuristic Picture of EXAFS

(1) Deep core electron is excited into a state above Fermi energy

(2) Single Scattering Approximation:
The photoelectron propagates as a spherical wave & interacts with neighboring atoms -> backscattered wave affects abs. properties of absorbing atom

XAFS Theory Bound-bound case for molecules

$$\mu(E) = \mu_0(E)[1 + \chi(E)]$$

Figures from "XAFS": © 2002 Matt Newville

The amplitude of the back-scattered photo-electron at the absorbing atom will vary with energy --> oscillations in $\mu(E)$ --> XAFS

The theory behind measuring X-ray Absorption Fine Structure (XAFS) to determine molecular composition

Fermi's Golden Rule:

$$\mu(E) = \mu_0(E)[1 + \chi(E)] \propto |\langle i | H | f \rangle|^2$$

Fine-Structure Term: depends ONLY on absorbing atom

change in photo-electron final state I due to back-scattering from neigboring atom

$$\chi(E)=rac{\mu(E)-\mu_0(E)}{\Delta\mu_0(E)} \propto < i \, |\, H\, |\, \Delta f>$$
 H: interaction term – represents changing between 2 energy, momentum states

initial state: an X-ray, a core electron, no photo-election

The EXAFS equation: represents interaction of forward scattering & backscattering photoelectron

$$\chi(\mathbf{k}) = \sum_{\mathbf{j}} \frac{N_{\mathbf{j}} S_0^2 f_{\mathbf{j}}(\mathbf{k}) e^{-2R_{\mathbf{j}}/\lambda(\mathbf{k})} \, e^{-2\mathbf{k}^2 \sigma_{\mathbf{j}}^2}}{\mathbf{k} R_{\mathbf{j}}^2} \mathrm{sin}[2\mathbf{k} R_{\mathbf{j}} + \pmb{\delta_{\mathbf{j}}}(\mathbf{k})]$$

Single Scattering Approximation

The practice behind measuring X-ray Absorption Fine Structure (XAFS) to determine molecular composition

Isolate fine structure term:

$$\chi(E) = \frac{\mu(E) - \mu_0(E)}{\Delta \mu_0(E)} \propto \langle i | H | \Delta f \rangle$$

interference effect: depends on wave nature of photoelectron

$$\chi(E) \longrightarrow \chi(k)$$
 $k = \sqrt{\frac{2m(E - E_0)}{\hbar^2}}$

$$k=\sqrt{\frac{2m(E-E_0)}{\hbar^2}}$$

Scattering Paths

Scattering Paths

$$\chi(k) = \sum_{i} \frac{S_0^2 F_i(k)}{2kR_i^2} e^{-2\sigma_i^2 k^2} e^{-2R_i/\lambda(k)} \sin[2kR_i + \Phi_i(k)]$$

ISM Grain Candidates

- UV, IR, & meteorite studies indicate compositions :
 - o ice: H₂O
 - graphite: C
 - o polyaromatic hydrocarbons : PAHs
 - silicates: SiO₂, FeSiO₃, FeSiO₄, MgSiO₃, Mg₂SiO₄
 - o iron species: Fe, FeO, Fe₂O₃, Fe₃O₄

K-edge Absorption Cross Sections for IRON compounds

Data from BNL National Synchrotron Light Source and Argonne National Laboratory Advanced Photon Source

Lee & Ravel, 2005 ApJ. 622, 970

Energy (eV)

Data from BNL National Synchrotron Light Source beamline X11A

Scattering Paths

Identifying Compounds using XAFS theory and synchrotron analysis techniques

Constellation-X and ISM Grain Physics Need AREA + Spectral R >= 2500-3000

	Gratings 0.25 – 6 keV FWHM			Calorimeter 6-10 keV FWHM		
	E/ΔE=300 Baseline Con-X	E/ΔE=1000 Chandra	Ideal E/∆E	E/ΔE~923 Suzaku	E/ΔE= 1500 Baseline Con-X	Ideal E/ΔE
Gas vs. dust	Difficult without context	YES (isolate WA though)		YES	YES	
Different dust	NO WAY!	MAYBE, with good statistics	3000 silicates from Fe/oxides but Fe ₃ 0 ₄ = Fe ₂ 0 ₃	OK with good statistics	silicates from iron / oxides	3000
Discern oxides	NO WAY!	NO	5000	NO	very hard to not possible	5000